CALL US ON: +44 (0) 131 449 8000
CALL US ON: +44 (0) 131 449 8000

News

New biological identity of inhaled nanoparticles revealed

Date: 24/8/2017

University of Hawai'i at Manoa College of Engineering has developed a new method to reveal the molecular mechanism of nano-bio interactions in the lungs. This research was published in the July 2017 issue of ACS Nano ("Unveiling the Molecular Structure of Pulmonary Surfactant Corona on Nanoparticles").

Zuo’s study showed that once the inhaled nanoparticles enter the lungs, they are quickly wrapped with a biomolecular corona made of the natural pulmonary surfactant. The entire surface of the lungs is lined with a lipid-protein pulmonary surfactant film which serves an important physiological function of host defense and surface tension reduction. The pulmonary surfactant corona provides the inhaled nanoparticles with a new identity in their subsequent interactions with the biological system, such as their clearance and cellular toxicity.

“Molecular scale interactions between nanoparticles and biomolecules are too small and too fast to be visualised by most conventional experimental methods,” Zuo said. “Hence, we studied the nano-bio interactions with a virtual experiment called molecular dynamics simulations. Using supercomputers, we created a virtual box in which a certain number of molecules and particles can move and interact with each other for a certain time by following the natural laws of physics and chemistry. The final equilibrium state of the simulation reveals the molecular mechanism of nano-bio interactions.”

This study may also advance the understanding of other air pollutants, such as vog, an air pollutant that is unique to Hawai’i. Given the environmental, health and safety impact of vog, there is an urgent need to understand its pulmonary risk, especially to those with existing respiratory conditions and children, whose respiratory system is significantly more vulnerable to particle invasion than adults.

Source: University of Hawaii via Nanowerk
Image: Guoqing Hu and Yi Zuo

Back to news listing

Did you know?

4 µm is the median aerodynamic diameter of particles that fall within the respirable size range.